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ABSTRACT

Simulating Arctic sea ice conditions up to the present and predicting them several months in advance has

high stakeholder value, yet remains challenging. Advanced data assimilation (DA) methods combine real

observations with model forecasts to produce sea ice reanalyses and accurate initial conditions for sea ice

prediction. This study introduces a sea ice DA framework for a sea ice model with a parameterization of the

ice thickness distribution by resolving multiple thickness categories. Specifically, the Los Alamos Sea Ice

Model, version 5 (CICE5), is integrated with the Data Assimilation Research Testbed (DART). A series of

perfect model observing system simulation experiments (OSSEs) are designed to explore DA algorithms

within the ensemble Kalman filter (EnKF) and the relative importance of different observation types. This

study demonstrates that assimilating sea ice concentration (SIC) observations can effectively remove SIC

errors, with the error of total Arctic sea ice area reduced by about 60% annually. When the impact of SIC

observations is strongly localized in space, the error of total volume is also modestly improved. The largest

simulation improvements are produced when sea ice thickness (SIT) and SIC are jointly assimilated, with the

error of total volume decreased by more than 70% annually. Assimilating multiyear sea ice concentration

(MYI) can reduce error in total volume by more than 50%. Assimilating MYI produces modest improve-

ments in snow depth (errors are reduced by around 16%), while assimilating SIC and SIT has no obvious

influence on snow depth. This study also suggests that different observation types may need different local-

ization distances to optimize DA performance.

1. Introduction

Significant changes have been observed in the Arctic

sea ice extent during the past few decades. Decreasing

trends of the total Arctic sea ice extent have been

identified in all seasons, and the strongest decline ap-

pears in summer (Comiso 2002; Meier et al. 2007;

Serreze et al. 2007). While large regional variations ex-

ist, most regions have experienced significant declining

trends in sea ice extent (Meier et al. 2007). Although the

causes of such trends are varied, warming Arctic tem-

peratures may be a dominant factor as opposed to nat-

ural oscillations (Comiso et al. 2008). On the other hand,

reduction in sea ice extent is associated with themajority

of the warming in the Arctic because of the strong pos-

itive ice–temperature feedbacks (Screen and Simmonds

2010) and because sea ice extent also influences other key

feedback processes (Po-Chedley et al. 2018). Besides, the

Arctic sea ice has also thinned at dramatic rates, as re-

flected by the strong reductions in the satellite-retrieved

sea ice thickness (Kwok and Rothrock 2009) and multi-

year ice concentration (Comiso 2012).Corresponding author: Yong-Fei Zhang, yz4362@atmos.uw.edu
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Arctic sea ice attracts particular interest because

anomalies in the concentration and thickness have

profound influences on human activities such as mari-

time shipping and subsistence hunting. Sea ice anoma-

lies also exert pressure on wildlife as animals face

habitat change. Climate models predict that the de-

creasing trends will continue and the Arctic Ocean may

be ice free in late summer within a few decades, albeit a

large intermodel spread exists in how rapidly Arctic sea

ice retreats (e.g., Holland et al. 2006; Stroeve et al. 2012).

Predicting sea ice anomalies in space and time is of

great importance, especially at seasonal–interannual

time scales. Persistence of sea ice anomalies is one of

the major sources of sea ice predictability. Persistence is

usually defined as the time when the lagged temporal

autocorrelation relaxes to 1/e (Lukovich and Barber

2007). The persistence of total Arctic sea ice extent lasts

for a few months, depending on season (Blanchard-

Wrigglesworth et al. 2011a; Day et al. 2014a). The per-

sistence of total Arctic sea ice volume is much longer, at

several years (Blanchard-Wrigglesworth et al. 2011a).

The physical processes involved with the reemergence

of sea ice cover are found to extend the predictability

limit of sea ice extent up to several years (Blanchard-

Wrigglesworth et al. 2011a,b). Predictability of sea ice

concentration (SIC) at the local scale (i.e., about 10–100km)

and sea ice extent at the regional scale (i.e., the scale of

seas within the Arctic like the Chukchi or south Beau-

fort Seas) is similar to the predictability of total Arctic

extent (Chevallier et al. 2013; Day et al. 2014a; Bushuk

et al. 2017).

The importance of initial conditions in predicting

Arctic sea ice from the local to pan-Arctic scale and at

seasonal time scales has been investigated or highlighted

by previous studies (e.g., Msadek et al. 2014; Day et al.

2014b; Collow et al. 2015; Dirkson et al. 2017). Each of

these studies found the benefit of accurately initializing

sea ice thickness (SIT) is unequivocal.

Since accurate initial conditions of the sea ice cover,

especially SIT, are crucial for seasonal prediction of sea

ice, it is necessary to use observations to constrain sea ice

initial conditions for predictions. Data assimilation

(DA) is a useful technique to combine observations and

model forecasts to reconstruct the state of sea ice in the

past and provide more accurate initial conditions for sea

ice predictions. Fortunately, SIC has been monitored by

satellites since the late 1970s. The assimilation of

satellite-retrieved observations of SIC exclusively has

been shown in a number of coupled sea ice–ocean

models to improve SIC forecasts but with little or no

improvements in SIT generally (e.g., Lisæter et al. 2003;
Lindsay and Zhang 2006; Massonnet et al. 2015;

Kimmritz et al. 2018). In contrast, assimilating SIC alone

gave promising improvements in SIT in particular re-

gions and seasons (e.g., over the Beaufort Sea from June

to August) in Yang et al. (2015, 2016a).

Clearly assimilating SIT as well as SIC is a high pri-

ority. However, SIT observations from satellites contain

large uncertainties because of large uncertainties in the

input parameters needed to retrieve SIT and large dif-

ferences in the instruments used to measure SIT from

space (e.g., Kwok and Cunningham 2008; Tian-Kunze

et al. 2014; Kaleschke et al. 2016; Tilling et al. 2016).

Hence there are far fewer studies assimilating SIT data

from satellite retrievals. Yang et al. (2014; 2016b) as-

similated SIT observations derived from the Soil Mois-

ture and Ocean Salinity (SMOS) satellite and showed

the forecast SIT is improved in the first-year ice zone

compared with sea ice draft observations from upward-

looking sonar moorings. Chen et al. (2017) assimilated

SIT observations derived from SMOS and CryoSat-2

satellites in spring and found the forecast SIT is only

improved in particular regions and times when com-

pared to Operation IceBridge airborne observations of

SIT, albeit the assimilation results match better with the

SIT observations that were assimilated. Mu et al. (2017)

assimilated SIT observations from SMOS andCryoSat-2

in the autumn–winter transition months and also dem-

onstrated a better match with the assimilated SIT ob-

servations, and improvements are also identified over

the Beaufort Sea compared with observations obtained

from upward-looking sonar moorings ice mass balance

buoys. Results from assimilating SIT to date are mixed

and highly dependent on the particular model, assimi-

lation algorithm, validating observation, and time pe-

riods examined.

Multiyear sea ice concentration (MYI) is the fraction

of sea ice that survives at least one summer. Because

multiyear sea ice is usually thicker than younger first-

year ice,MYI is positively correlated with SIT andmight

provide valuable information about SIT (Maslanik et al.

2007). MYI observations can be retrieved from satellite

passive microwave observations (e.g., Belchansky et al.

2004) and satellite scatterometer backscatter fields (e.g.,

Kwok 2004; Nghiem et al. 2006). Nevertheless, MYI

observations have never been assimilated into sea ice

models. Our study represents the first effort to evaluate

the feasibility and possible benefits of incorporating

MYI data into a sea ice model.

We design perfect model observing system simulation

experiments (OSSEs) to investigate a variety of ques-

tions. One goal is to investigate whether assimilating

SIC observations could improve SIT estimates in our

system, which is one of the few applying DA in a sea ice

model with multiple thickness categories to resolve the

ice thickness distribution. In such a model, SIC and SIT
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are aggregates of concentration and thickness across the

ice thickness distribution. In addition, with OSSEs

we directly assess the improvement to the model states

from assimilating a variety of hypothetical observation

types (e.g., SIC, SIT, and MYI). Improvements can be

assessed in variables that are not well observed, like SIT

and snow depths. We also test different DA algorithms

and postprocessing methods. The findings from this

study could help configure DA algorithms and post-

processing methods for real observation DA, estimate

the importance of observed variables, and offer advice

on designing observing networks.

Massonnet et al. (2015) were the first to apply a mul-

tivariate DA method [the ensemble Kalman filter

(EnKF) in their case] in a sea icemodel withmultiple ice

thickness categories. The EnKF allowed them to as-

similate SIC observations from satellite retrievals to

update unobserved variables such as the ice thickness

distribution, as well as SIC. They found the ice thickness

distribution updates were substantial. The results of the

DA were used to initialize a retrospective forecast that

showed improved predictive skill for total Arctic sea ice

extent compared to a forecast initialized without DA.

However, they did not explore the impact of their as-

similation on SIT because of the previously mentioned

shortcomings of SIT observations.

The sea ice model, DA framework, design of OSSEs,

and indices used to evaluate model results are presented

in section 2. We evaluate and discuss the results of the

OSSEs in section 3.We closewith conclusions in section 4.

2. Data and methodology

a. The DART/CICE sea ice data assimilation system

The Los Alamos Sea Ice Model (CICE) is the sea ice

component of the Community Earth System Model

(CESM). Version 5 of this sea ice model (CICE5), used

in this study, simulates ice and snow growth as a result of

thermodynamic and dynamic processes with a subgrid-

scale ice thickness distribution (Hunke et al. 2015). The

ice thickness distribution is represented by partitioning

the ice pack into multiple thickness categories. By de-

fault, there are five categories with the lower bounds of

0, 0.64, 1.39, 2.47, and 4.57m. Each thickness category

has multiple vertical layers to resolve the sea ice tem-

perature and salinity variations. The sea ice is coupled

to a slab ocean with annually periodic, prescribed ocean

heat fluxes, and sea ice and slab ocean are forced at the

surface with atmospheric fields from the Community

Atmosphere Model version 4 (CAM4)/Data Assimila-

tion Research Testbed (DART) ensemble reanalysis

(Raeder et al. 2012) for years 2001–03. These years are

practical because they are near the middle of the satel-

lite period, and approximate the average conditions

since SIC observations have become available.

DART is community software that provides ensemble-

based DA techniques to modelers and observationalists

(Anderson et al. 2009). Previously, it had been linked

with three of the physical components of the CESM

[atmosphere (Raeder et al. 2012), ocean (Danabasoglu

et al. 2012), and land (Zhang et al. 2014)], and had been

demonstrated to effectively assimilate various observa-

tion types. This study describes the linking of the

‘‘Manhattan’’ release of DART with CICE5 to make a

sea ice DA system capable of assimilating multiscale

(i.e., observations with different spatial resolutions) and

multivariate (i.e., different observed quantities) obser-

vations and convenient to explore a variety of data as-

similation options.

The software interface to link CICE5 (as part of ver-

sion 2 of the CESM) and DART is distributed with

DART and requires no additional modifications to the

CICE5 in CESM. Each time data are assimilated,

CICE5 stops and writes a restart file. The DA interface

reads the sea ice restart variables (or a subset of them as

selected by the user) and the observations to be assim-

ilated. The DA interface places the sea ice variables

into a ‘‘DART state vector.’’ The EnKF computes co-

variances between the DART state vector and obser-

vations and updates the state as necessary. Then the DA

interface postprocesses the state to enforce various

properties, including updating variables that are not in

the DART state vector, creating temperature and sa-

linity profiles for newly added sea ice, and limiting the

aggregate SIC within its physical boundary from 0% to

100%. At the last step, DART rewrites the state to the

restart. Finally, CICE5 resumes integration with the

modified restart.

b. The EnKF

Data assimilation is an approach to combine model

forecasts and observations with weights determined by

their relative error (e.g., Kalnay 2002). A typical se-

quential data assimilation cycle is composed of a fore-

cast step, where model states advance to the time when

observations are available, and an analysis step, where

the model forecast and the observation are merged to

obtain analysis states based on their error statistics. The

EnKF is a Monte Carlo approach to the Kalman filter

(Evensen 1992) that estimates the background error

covariance from the statistics of an ensemble of model

forecasts (Evensen 1994). One variant of the EnKF, the

ensemble adjustment Kalman filter (EAKF), is used in

this study; documentation of the EAKF can be found in

Anderson (2001).
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c. Perfect model OSSEs

Given the shortage of SIT and snow-depth observa-

tions, and hence the difficulty of evaluating the results of

real observation DA, our study applies perfect model

OSSEs to investigate DA options and model processing

methods and test the potential value of different ob-

served quantities. Each of our integrations has 30

CICE5 ensemble members. Sampling error due to lim-

ited ensemble size is a challenge for all ensemble filters,

but we confirmed that 30 members are sufficient to ex-

plore the important questions in this study. The CICE5

ensemble is created by forcing each member with at-

mospheric fields from a given ensemble member from a

CAM4/DART ensemble reanalysis (Raeder et al. 2012).

We enhance the CICE5 ensemble spread by using dif-

ferent albedo and ice strength parameters for each en-

semble member. We perturb the dry snow grain radius

(R_snw) to adjust albedo and the empirical ice strength

parameter (Cf). R_snw and Cf are among the parame-

ters that the model predictions are sensitive to (Urrego-

Blanco et al. 2016).

A CICE5 ensemble integration without DA, known

as a free run (FREE), is produced as a reference case.

One of the FREE ensemble members is chosen ran-

domly as the simulated ‘‘truth’’ (Figs. 1a–c). We assume

that only aggregate quantities could be observed, so the

multicategory model variables from the truth are ag-

gregated to compute the true SIC, MYI, and SIT. We

use the convention of upper-case names for aggregated

variables and lower-case names for category-based

variables. We create synthetic observations from these

aggregate variables by adding a draw from a normal

distribution with zero mean and specified standard de-

viation to the true quantities. The standard deviations

are 15% of the true value for SIC and MYI [an ap-

proximate combination of bias and precision of the

satellite-based concentration data; e.g., Meier (2005)]

and 0.1m for SIT (an estimate in anticipation of high

precision future data). The model variables that are

updated and/or postprocessed are aicen, vicen, and

vsnon, representing category-based sea ice concentra-

tion, sea ice volume, and snow volume, respectively.

Table 1 summarizes the OSSEs conducted with dif-

ferent configurations that can be grouped into two

sets. The first set (DA_dflt, DA_aicen, and DA_inf_

loc) is produced to determine the best combination

of DA algorithms and postprocessing methods for

SIC-only assimilation. The second set (DA_SIC,

DA_SIC_SIT, and DA_SIC_MYI) is produced to as-

sess the impact of different observation types and is

analyzed for years 2001–03.

The DA experiment with default options (DA_dflt)

has greatly reduced bias in the aggregate SIC, but ex-

periences temporal drift in the concentration of several

of the ice categories that sum to a negligible drift in the

aggregate. The additional two experiments test modifi-

cations to eliminate this drift, while maintaining the

reduced bias in the aggregate SIC. The drift in DA_dflt

occurs within a few months, so experiments in the first

set were analyzed for just one year (i.e., 2001).

Experiment DA_dflt assimilates SIC observations

with aicen, vicen, and vsnon updated directly by the

EnKFwith a localizationmethod (Anderson 2007a) that

FIG. 1. Daily total Arctic (a) sea ice area, (b) sea ice volume, and (c) snow volume from a CICE5 free run. Each gray line represents one

ensemble member, black line the ensemble mean, and red line the truth, which is just one member of the ensemble. Daily biases of the

total Arctic (d) sea ice area, (e) sea ice volume, and (f) snow volume, with the black line representing the ensemble mean of FREE, blue

line the ensemble mean of DA_dflt, and gray dashed line the zero reference line. The experiment time period is for the year 2001.
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uses a Gaspari–Cohn-function (Gaspari and Cohn 1999)

half-width of 0.05 rad (about 320 km). The influence of

an observation is limited within a circle with a radius of 2

half-widths. One unique feature of EnKF is that un-

observed model states can be directly updated in the

analysis step based on their correlations with the ob-

served variable, which facilitates multivariate data as-

similation schemes (Evensen 2003). Thus, the ice

concentration, as well as other sea ice states, of indi-

vidual categories can be updated when the observations

of aggregate quantities are assimilated. In experiment

DA_dflt, aicen, vicen, and vsnon are updated in the

analysis step based on their correlation with SIC.

Certain treatments applied to the updated state are

necessary when special conditions occur. First of all, SIC

(the sum of aicen over five categories)must be bounded

between 0% and 100%. If a negative SIC should ever

arise, all aicen are subsequently set to zero, Likewise,

aicen are scaled if needed so that SIC never exceeds

100%. If SIC is within its bounds but several individual

categories become negative, aicen of those categories

are set to 0 and aicen of other categories are reduced

proportionally to compensate for the negative amount.

If all ensemble members are ice-free while the obser-

vation has ice, no adjustment is made.

Experiment DA_aicen is identical to DA_dflt except

that theEnKFonly updates aicen directly, while vicen and

vsnon are only modified by postprocessing as follows:

vicen1 5 aicen1 3 hicen2 and (1)

vsnon1 5 aicen1 3 hsnon2 , (2)

where the superscript plus symbol indicates posterior

and minus symbol indicates prior, and hicen and hsnon

are category-based sea ice thickness and snow thickness,

respectively.

Experiment DA_inf_loc uses the same postprocessing

method as DA_aicen and an adaptive inflation algo-

rithm (Anderson 2007b) applied to the prior states.

State inflation is usually employed to modify the state

variance to account for unconsidered errors and to avoid

filter divergence (e.g., Anderson and Anderson 1999;

Whitaker and Hamill 2012). An initial inflation value of

1.0, a standard deviation of 0.6, and an inflation damping

of 0.9 are specified in DART. The adaptive inflation

aims to maintain the model ensemble spread so the

ensemble members do not converge after several DA

cycles. The localization half-width is decreased to a

much smaller value, 0.01 rad (about 64 km), to restrict

the influence of each observation to a few neighboring

grid cells. We also conducted an experiment applying

inflation only, but it has little influence on the ice

thickness distribution, hence is not discussed explicitly

here. Experiment DA_inf_loc gives the best results, so

its DA algorithms and postprocessing are used for set 2.

Experiment DA_SIC is the same as DA_inf_loc; the

name is changed for simplicity when comparing with the

remaining experiments and indicates that only SIC is

assimilated. Experiment DA_SIC_SIT assimilates SIC

and SIT observations with other options the same as

DA_SIC. Experiment DA_SIC_MYI assimilates SIC

and MYI observations jointly with other options the

same as DA_SIC.

All experiments are initialized on 1 January 2001. A

spinup case is run for 40 years using periodic atmo-

spheric forcing of year 2000 so the sea ice states reach

equilibrium. Then a case with 30 CICE members, each

member using a distinct atmospheric forcing and pa-

rameter set and initialization from the same equilibrated

sea ice state, is run for the year 2001, which produces an

ensemble of initial conditions for the experiments listed

in Table 1. For the assimilation experiments, observa-

tions are assimilated at a daily interval.

d. Metrics used to evaluate model results

Bias is defined as the 30-member ensemble mean of

the experiments minus the truth. Biases of the total

Arctic sea ice area, sea ice volume, and snow volume are

TABLE 1. List of CICE5 experiments with different configurations.

Expt

Assimilated

observations

State

vector

Postprocessed

states Inflation

Localization half-width

[rad (km)]

Expt time

period

FREE — — — — — 2001–03

DA_dflt SIC aicen, vicen,

and vsnon

— No 0.05 (320) 2001

DA_aicen SIC aicen vicen and vsnon No 0.05 (320) 2001

DA_inf_loc (DA_SIC) SIC aicen vicen and vsnon Yes 0.01 (64) 2001–03

DA_SIC_SIT SIC and SIT aicen vicen and vsnon Yes 0.01 (64) 2001–03

DA_SIC_MYI SIC and MYI aicen vicen and vsnon Yes 0.01 (64) 2001–03

DA_SIT_LOC0.01 SIT aicen vicen and vsnon Yes 0.01 (64) 2001

DA_SIT_LOC0.05 SIT aicen vicen and vsnon Yes 0.05 (320) 2001

DA_SIT_LOC0.1 SIT aicen vicen and vsnon Yes 0.1 (640) 2001
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calculated every day. The total Arctic sea ice area is the

area actually covered by sea ice in the Northern Hemi-

sphere, while the aforementionedArctic sea ice extent is

the total area in the Northern Hemisphere where sea ice

concentration exceeds 15%. The two measurements

give slightly different information and we use both.

The mean absolute bias (MAB) of a variable (e.g.,

total Arctic sea ice area) is calculated as follows:

MAB5
�
N

i51

jxmi 2 xtij
N

, (3)

where i is the index in time,N is the sample size (i.e., the

number of days calculated), xmi is the ensemble mean,

and xti is the true value of the variable.

Another commonly used statistical measure of model

performance is the root-mean-square error (RMSE),

defined as follows:

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
N

i51

(xmi 2 xti)
2

N

vuuut
, (4)

where i is also the index in time, and x can refer to total

Arctic ice area, ice volume, and snow volume or SIC,

SIT, and snow depth (SNO) at grid points. We use both

RMSE and MAB to evaluate model performance.

Evaluating the total Arctic sea ice area or volume is

useful but sometimes can be misleading. Smaller MAB

or RMSE may result when positive and negative errors

at the regional scale compensate for each other, so we

also calculate the RMSE of the sea ice states at each grid

point and evaluate the RMSE spatially.

The integrated ice-edge error (IIEE) is another index

used to evaluate sea ice cover in this study. The IIEE is

the sum of the area of grid boxes where the experiment

and the truth disagree on whether sea ice is present or

not. A SIC threshold of 15% is used to determine if a

grid cell has sea ice present. IIEE can be decomposed

into an absolute extent error (AEE) and amisplacement

error (ME). AEE is the commonly used sea ice extent

error. ME is the residual error (IIEE minus AEE) that

reflects excessive sea ice in one place and insufficient sea

ice in another place, which is found to dominate IIEE in

model forecasts (Goessling et al. 2016).

3. Results and discussion

a. Optimization of SIC data assimilation

In the DA_dflt experiment, the only assimilated ob-

servations are the aggregate SIC, while the prognostic

variables that are updated are category-based ice con-

centration, ice volume, and snow volume (aicen, vicen,

and vsnon). Figure 1d shows that the total Arctic sea ice

area is significantly improved after assimilating SIC

observations, but Fig. 1e indicates that the total Arctic

sea ice volume experiences large degradation. The total

Arctic snow volume is slightly improved, with negative

biases becoming more positive biases (Fig. 1f). We show

in Fig. 2 spatial maps of monthly mean biases in the

spring (April–May) for SIC, SIT, and aggregate SNO to

illustrate where improvement and degradation occur at

the local scale. These maps show that SIC is indeed

improved along the ice edge (Fig. 2a). However, the

slight improvement in the total Arctic snow volume as

shown in Fig. 1f is only because the positive biases in

SNO in the central Arctic and along the Fram Strait

compensate for the negative biases in SNO elsewhere

(Fig. 2c). Clearly, SIT is degraded almost everywhere

(Fig. 2b). Previous studies also suggest that SIT errors

could grow despite the fact that SIC is improved (e.g.,

Kimmritz et al. 2018).

The disappointing results of DA_dflt may be explained

by three issues. Spurious and fake correlations might exist

between SIC and aicen or vicen because of sampling

errors. Further, the EnKF assumes an approximately

Gaussian distribution for the ensemble in the state vari-

ables that are updated. Our postprocessing then restricts

aicen (for each category and for the sum) to the range from

0% to 100% and vicen to be nonnegative. The ratio vicen/

aicen is non-Gaussian and generally has an ensemblemean

shifted higher than the ratio of the ensemble means of

vicen and aicen and a long tail toward higher thickness.

Moreover, the ice thickness distributionmethod in CICE5

requires the diagnosed category thickness (vicen/aicen) to

lie within category thickness boundaries. The model

normally only has to shift ice from adjacent categories

when the ice grows or melts. Figure 3 demonstrates that

DA_dflt moves more area into the fourth and fifth cate-

gories (the highest thickness categories), which can partly

explain why DA_dflt has large positive biases in ice vol-

ume. Experiment FREEhas a large negative bias in snow

volume year-round (Fig. 1f). Because snow is usually

thinner over younger and thinner sea ice (e.g., Kurtz and

Farrell 2011), decreased ice area in thin categories and

increased ice area in thick categories causes increased

average snow depth. This increase of snow depth com-

pensates for the negative bias found in FREE, which is

consistent with Fig. 2c.

Experiment DA_aicen is designed to maintain the ice

thickness and snow depth of each category and let the

ice area be the only variable directly altered by obser-

vations. In this case, vicen and vsnon are only modified

by the postprocessing as given in Eqs. (1) and (2). This

5916 JOURNAL OF CL IMATE VOLUME 31

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/18/23 07:37 PM UTC



FIG. 2. The 2001 spring (April–May) mean biases of (a) SIC, (b) SIT, and (c) SNO, for the experiments (left)

FREE and (right) DA_dflt.
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treatment does not influence the total Arctic sea ice area

very much, but improves the distribution of total Arctic

sea ice area among the five categories as shown in Fig. 3.

The temporal RMSE of total Arctic sea ice volume is

reduced from 4.609 to 3.6073 103 km3, and the MAB of

the total volume is reduced from 4.347 to 3.4103 103km3

(Table 2). Figure 4a confirms that, although SIC is

improved in DA_dflt, the amount of ice in individual

FIG. 3. Daily biases of the total Arctic sea ice area in 2001 of (a)–(e) individual categories and (f) the aggregate,

for FREE (black), DA_dflt (blue), DA_aicen (green), and DA_inf_loc (red). Gray line in each plot represents the

zero reference line.

TABLE 2. The IIEE, RMSE, and MAB of the Arctic ice area, ice volume, and snow volume from four experiments: FREE, DA_dflt,

DA_aicen, and DA_inf_loc. Boldface numbers in the columns of DA experiments indicate DA has a smaller index than FREE.

Experiments

Indices FREE DA_dflt DA_aicen DA_inf_loc

IIEE (106 km2) Total IIEE 1.049 0.847 0.849 0.768
AEE 0.559 0.469 0.463 0.516

ME 0.491 0.378 0.386 0.252

RMSE Ice area (106 km2) 0.481 0.186 0.192 0.193

Ice volume (103 km3) 0.673 4.622 3.620 0.799

Snow volume (103 km3) 0.300 0.168 0.262 0.294

MAB Ice area (106 km2) 0.380 0.143 0.143 0.149

Ice volume (103 km3) 0.581 4.363 3.423 0.692

Snow volume (103 km3) 0.293 0.155 0.252 0.284
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FIG. 4. RMSE of (a) aice4, (b) SIC, (c) vice4, (d) SIT, (e) vsno4, and (f) SNO for (left)–

(right) DA_dflt minus FREE, DA_aicen minus FREE, and DA_inf_loc minus FREE. Negative

values indicate theDA cases outperform FREE, while positive values indicateDAdegrades result. Daily

model output in 2001 is used to calculate RMSE.
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categories (aicen in the fourth category is shown for il-

lustration) is degraded. ExperimentDA_aicen improves

over DA_dflt slightly: SIC is less biased in the central

Arctic and along the Fram Strait, and SNO errors are

removed along the coast and in the central Arctic.

However, the results of DA_aicen are disappointing, as

there still are larger errors in SIT than FREE.

We apply an adaptive inflation and a localization scheme

to reduce sampling errors in the experiment DA_inf_loc.

Experiment DA_inf_loc generally reduces the ice area bia-

ses in every category (Figs. 3a–e). The RMSE of SIC in in-

dividual categories is also reduced (the fourth category is

shown in the left column of Fig. 4c as an example). The

MABandRMSEof the totalArctic ice area are roughlyhalf

of those of FREE, although they are not always smaller

than DA_dflt and DA_aicen. Experiment DA_inf_loc

also produces the smallest IIEE with a notable reduction

in ME (Table 1). The large bias in the total Arctic sea ice

volumeproduced byDA_dflt andDA_aicen is reduced by

an order of magnitude. Comparing Fig. 4c with Figs. 4a,

b indicates that DA_inf_loc improves the spatial pattern

of SIC over DA_dflt and DA_aicen, but has very limited

influence on SIT and SNO as compared to FREE.

Results of the above experiments suggest that we

should be cautious when updating the unobserved

model state variables. Given a limited ensemble size and

nonlinear relationships between the model variables

and the observation, it might be problematic to in-

crement unobserved model variables directly through

the EnKF. Kimmritz et al. (2018) also experienced bias

growth in SIT in their SIC DA experiments because of

unrealistic updates on thick sea ice categories. They

chose to preserve the mean ice thickness of each cate-

gory to mitigate such a drift. No localization was applied

in their study. Massonnet et al. (2015) performed a lo-

calization radius of 800 km to SIC DA, which was based

on the spatial scale for decorrelation of SIT found by

Blanchard-Wrigglesworth and Bitz (2014). However,

better performance with a smaller localization half-

width in our study indicates that the correlation length

scale of SIC may be quite small. We discuss more about

the different correlation length scales between SIC and

SIT later, in section 3c. In summary, to maintain/improve

the ice thickness distribution, we allow an observation to

influence only a few neighboring grid cells.

b. Assimilation of multivariate observations

Other rarely assimilated observations of sea ice in-

clude SIT and MYI. As mentioned in the introduction,

MYI data are underutilized and have not been assimi-

lated into sea ice models. The joint SIC and SIT DA has

been done before with real data (e.g., Yang et al. 2015,

2016a). However, given the large uncertainty and lim-

ited availability of real SIT data, our study has value in

quantifying the potential of higher-quality SIT and

seasonally complete observations as motivation for

producing better observations.

The relative importance of these observation types

to a large extent depends on whether they have a good

correlation with the analyzed state variables, which are

just aicen in this second set of experiments. Figure 5

displays correlations between ice concentration of the

third category, aice3, and the observations (SIC, SIT,

and MYI) for an arbitrary day chosen to show that

correlations are generally strong between aicen and SIT,

moderate to strong between MYI and SIT, and mostly

weak between aicen and SIC. In the particular date

chosen, the correlation between aice3 and SIC is largest

FIG. 5. Local correlations between SIC of the third thickness category and different observation types: (a) the aggregate SIC, (b) the

aggregate SIT, and (c) the aggregateMYI. At each point, we calculate the correlation of the observation and aice3 across the 30 ensemble

members for 1 Mar 2001, an arbitrary date (see text).
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FIG. 6. Daily biases of the Arctic total (a) sea ice area, (b) sea ice volume, and (c) snow

volume from four experiments: FREE (black line), DA_SIC (blue line), DA_SIC_SIT (red

line), and DA_SIC_MYI (green line). Gray lines are the zero reference line. The experiment

time period is from 2001 to 2003.
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primarily along the ice edge and is very small and noisy

in the central Arctic, where SIC hardly has any ensemble

spread (Fig. 5a). SIT has a much larger correlation with

aice3 for the whole Arctic (Fig. 5b). The correlation

between MYI and aice3 is in between (Fig. 5c). The

specific patterns are seasonally variable.

As shown in Figs. 6a and 7a, the additional assimila-

tion of SIT (DA_SIC_SIT) and MYI (DA_SIC_MYI)

slightly improves the total Arctic sea ice area and SIC

spatially over DA_SIC. For the total Arctic sea ice

volume, DA_SIC starts to outperform FREE after one

year, DA_SIC_SIT always performs the best throughout

the experiment period, and DA_SIC_MYI is in-

termediate (Fig. 6b). Figure 7b further demonstrates

that DA_SIC has the least influence on SIT, with im-

provements limited to the Beaufort Sea, Fram Strait,

and theGreenland Sea. DA_SIC_SIT performs the best,

with almost all the errors removed, and DA_SIC_MYI

works reasonably well too, with large improvements

over the whole Arctic.

FIG. 7. RMSE of (a) SIC, (b) SIT, and (c) SNO from four experiments: (left)–(right) FREE, DA_SIC, DA_SIC_SIT, and DA_SIC_MYI.

Daily model output from 2001 to 2003 is used to calculate RMSE.
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Results for snow volume are mixed. As shown in

Fig. 6c, DA does not influence snow volume in the

melting season (roughly fromMay to September) and

has relatively larger impacts in the accumulation

season (roughly from October to April), which is

opposite to the updates exerted on sea ice area by DA

(Fig. 6a). Among all the cases, DA_SIC_MYI has the

largest influence on snow volume. Since snowfall

starts earlier than sea ice advances, the already-

existing multiyear sea ice can capture more snow

than first-year sea ice. Hence, compared with other

observations, MYI is more related to snow volume.

Table 3 summarizes the IIEE, RMSE, and MAB of

the total Arctic sea ice area, sea ice volume, and snow

volume for FREE and the DA experiments. Experi-

ment DA_SIC can effectively remove errors of the

total Arctic sea ice area by about 60% annually and by

about 50% in the spring months (April–May). Sea ice

extent error as measured by IIEE is reduced by 28%

annually and 22% in spring. The total Arctic sea ice

volume error is reduced by 37% annually and around

30% in spring. Experiment DA_SIC_SIT can further

improve the total Arctic ice area but not ice extent.

SIT is significantly improved, with error reduced by

more than 70% annually and more than 80% in spring.

Experiment DA_SIC_MYI slightly improves ice area

over DA_SIC. It improves ice volume fairly well with

an approximately 50% error reduction. Experiment

DA_SIC_MYI is able to decrease the SNO error by

about 16%, while DA_SIC and DA_SIC_SIT have no

obvious influence on SNO.

c. Further discussion on localization half-width

Wedemonstrated that a small localization is necessary in

order to optimize the performance of SICdata assimilation.

The same localization half-width of 0.01 rad is utilized for

the multivariate DA experiments. However, different ob-

served quantities may have different correlation length

scales. For example, SIT very likely has a much larger

correlation length than SIC (Blanchard-Wrigglesworth and

Bitz 2014). To examine the influence of different localiza-

tion distances on SIT assimilation, we run additional DA

experiments assimilating SIT only for the year 2001

with different localization half-widths: DA_SIT_LOC0.01

(0.01 rad), DA_SIT_LOC0.05 (0.05 rad), and DA_SIT_

LOC0.1 (0.1 rad). Figure 8 suggests that larger localization

half-widths work better for SIT assimilation. The fact that

most differences in SIC reside along the ice edges (Fig. 8a)

is very likely because DA_SIT_LOC0.01 has already re-

moved most of the SIC errors in the central Arctic. As a

contrast, there are still remaining errors in SIT in the

central Arctic, and hence SIT is improved a lot when

larger localization half-width is applied (Fig. 8b). Experi-

ments DA_SIT_LOC0.05 and DA_SIT_LOC0.1 also have

smaller IIEE, RMSE, and MAB of the total Arctic sea ice

area, ice volume, and snowvolume thanDA_SIT_LOC0.01.

Compared to DA_SIT_LOC0.01, they can reduce RMSE

andMAB of ice area and volume by more than 50%. Since

TABLE 3. The IIEE,RMSE, andMABof ice area, ice volume, and snow volume fromFREEand threeDAexperiments: DA_SIC,DA_

SIC_SIT, andDA_SIC_AGE. Each index is given in annualmean and spring (April–May)mean. Each boldface number indicatesDAhas

a smaller error index, and each italic number indicates the case has the smallest error index among the four experiments. Each percentage

in parentheses indicates the decrease or increase of error index compared against FREE.

Experiments

Indices FREE DA_SIC (DA_inf_loc) DA_SIC_SIT DA_SIC_MYI

IIEE (106 km2) Total IIEE Annual 1.143 0.829 (228%) 0.820 (228%) 0.829 (228%)

Spring 0.932 0.732 (222%) 0.723 (222%) 0.730 (222%)

AEE Annual 0.599 0.563 (26%) 0.560 (26%) 0.557 (27%)

Spring 0.520 0.441 (215%) 0.432 (217%) 0.434 (217%)

ME Annual 0.544 0.265 (251%) 0.260 (252%) 0.272 (250%)

Spring 0.412 0.291 (229%) 0.291 (229%) 0.297 (228%)

RMSE Ice area (106 km2) Annual 0.470 0.192 (259%) 0.134 (271%) 0.165 (265%)

Spring 0.577 0.281 (251%) 0.202 (265%) 0.250 (257%)

Ice volume (103 km3) Annual 1.128 0.713 (237%) 0.315 (272%) 0.582 (248%)

Spring 1.557 1.090 (230%) 0.284 (282%) 0.710 (254%)

Snow volume (103 km3) Annual 0.248 0.254 (2%) 0.237 (25%) 0.209 (216%)

Spring 0.324 0.355 (9%) 0.321 (21%) 0.269 (217%)

MAB Ice area (106 km2) Annual 0.365 0.150 (259%) 0.109 (270%) 0.130 (264%)

Spring 0.551 0.269 (251%) 0.194 (265%) 0.241 (256%)

Ice volume (103 km3) Annual 0.991 0.622 (237%) 0.232 (277%) 0.507 (249%)

Spring 1.477 1.053 (229%) 0.242 (284%) 0.641 (257%)

Snow volume (103 km3) Annual 0.211 0.216 (2%) 0.197 (27%) 0.172 (218%)

Spring 0.319 0.353 (10%) 0.319 (0%) 0.267 (216%)
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DA_SIT_LOC0.01 has already removed most of the errors,

further reducing the residual errors may seem insignificant,

but this is not the case with the absence of a dense SIT ob-

servation network. Observations of SIT are usually sparse in

space and time in reality and hence applying a larger local-

ization distance will make a greater difference.

4. Conclusions

We linked CICE5, the sea ice component of CESM, with

DART to develop a sea ice data assimilation (DA) system

that is capable of assimilatingmultivariate observations and

exploring various ensemble DA options. We designed a

series of perfect model observing system simulation exper-

iments (OSSEs) to demonstrate the functionality of theDA

system, to explore the optimal use of sea ice concentration

(SIC) observations, and to test the relative importance of

different observation types for improving sea ice analysis.

Assimilation of SIC observations can significantly

reduce the SIC error but not necessarily the area biases

of individual categories, that is, the ice thickness distri-

bution. A small localization distance is required in order

to improve the ice thickness distribution, which suggests

SIC has a small correlation length scale. Adaptive ap-

proaches for localization should be followed more sys-

tematically. Performance of DA also depends on how

we postprocess the model states. Updating sea ice vol-

ume as the product of the posterior ice area and the prior

ice thickness is a better choice than directly updating sea

ice volume through the EnKF. Overall, the best SICDA

case could improve the simulations of sea ice thickness

(SIT) but mostly in the marginal sea ice zone.

Assimilating other important observation types will fur-

ther improve simulations of the Arctic ice pack in different

ways. The joint assimilation of SIC and SIT produces the

best results for SIC andSIT. The improvements are large for

FIG. 8. RMSE of (a) SIC and (b) SIT for (left) DA_SIT_LOC0.05 minus DA_SIT_LOC0.01 and (right) DA_SIT_

LOC0.1 minus DA_SIT_LOC0.01. Negative values indicate larger localization distances work better, while positive

values indicate smaller localization distances work better. Daily model output in 2001 is used to calculate RMSE.
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the whole Arctic. Multiyear ice concentration (MYI) is a

good substitute for SIT.AssimilatingMYI and SIC together

has a fairly good performance in SIT both temporally and

spatially. It is worth noting that MYI and SIT are strongly

correlatedwith sea ice concentration of individual categories

in the interiorArctic sea ice pack, so assimilating them leads

to improved estimates in the interior Arctic, where SIC

observations alone are unable to improve the state.

We also suggest that it is more effective to use a dif-

ferent localization for each type of observation–state

variable pair. For example, a small localization half-

width is optimal for the pair of SIC and aicen, while a

larger localization half-width performs better for the pair

of SIT and aicen. This could be explained by the different

spatial correlation length scales of SIC and SIT.
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